ClassGenerator Users Guide

Copyright © 2023 by Select Calibration Inc. All rights reserved.

ClassGenerator Users Guide

Table of Contents

o Yo [T 0 o [P 3
L@ L= YT 3
ClassGenerator EXamPle. ..o s ar e s s ae e s s e s e e rannneeaanns 5
Project OULPUL File. .. et s e e neees 5
SOUICE OULPUL FilES ittt s e e r e e e eaaneans 6
Effect Of INpUt OptioNS. ..o e anea s 9
Main and RESOUICE FilES. ..ttt e e e a e e e raneens 9
(@0 o g o1 11 Lo N 24 o 5= o 11
EXIStING PrOJeCES. i e 11
(@0] o] 1 1=) u 0] g T = o o] =7 P 12
VAT [0 o I o 111 o Y2 13

Select Calibration Inc. November 13, 2023 Page 2 of 13

ClassGenerator Users Guide

Introduction

The ClassGenerator utility converts the Qt Designer UI forms into standard C++4 source and
header files. This program was written to simplify the process used by the author to create
source files from the Qt Designer UI file for GUI elements. The difference between the output
created by this utility and the output produced by Qt version is that the ClassGenerator version is
more focused on creating traditional C++ source and header files. The downside when using this
method is that revisions of the UI forms are difficult to incorporate into existing programs.

In addition to creating the source and header files from UI forms the ClassGenerator utility can
create or update a project file and create a generic resource file if a resource file does not exist.

Overview

The ClassGenerator user interface is shown in illustration 1:

Class Generator 1.3 et

Qt Designer Ul File: |/home/ron/MyProjects/classgenerator/sample_ui/sample_designer_file.ui

Input:
Header Data File: /home/ron/MyProjects/classgenerator/sample_ui/header.txt
Class Object Prefix: d_ v Update project file

Class Prefix: L ¥ Create generic main.cpp file

Options:
Right Column Position: 40 - Use QApplication::translate for strings
Tab Stop Width: 4 = | Create generic resource file

Project Path: | /home/ron/MyProjects/test

Output: Relative Source Path: |src

Relative Resource Path: res

sing file: /home/

existing fle
g source file
g existing fle

Log

lacing ex

All tasks completed

Process Close
Illustration 1: ClassGenerator user interface

Options:

Input Options Description

Qt Designer Ul File The UI Designer file. This is an XML based file containing all the
GUI elements of a dialog, widget, or other control interface.

Header Data File A file containing the header data that is to appear at the top of
all source and header files.

Select Calibration Inc. November 13, 2023 Page 3 of 13

ClassGenerator Users Guide

Options

Description

Class Object Prefix

Identification text used to decide if an object should be created
in the class constructor or in the private data section of the
class. Objects found in the designer file that match this prefix
will not appear in the constructor but in the private declaration
of the class.

Class Prefix

Text added at the beginning of the class name. For example, if
the name of a top level Dialog in the Qt Designer is 'MyDialog'
and the class prefix is 'T' then the generated source files will
have 'TMyDialog' for the class name.

Right Column Position

All variables are created on individual lines. All variables will be
placed at this character position from the left margin.

Tab Stop Width

The number of characters representing each tab. Most editors
default to 8 characters per tab but some prefer 4 characters
instead.

Update project File

The existing project file can be updated with the names of the
new source and header file(s) if checked. If there is no existing
project file then a new, generic, project file is created.

Create generic main.cpp file

When a new project file is created a new, generic, main.cpp file
can also be generated at the same time. The references in this
file are always from the current widget. This file is only created
when there is no existing project file.

Use QApplication::translate for
strings

String constants can be initialized using QStringLiteral() or
QApplication::translate() functions. For programs that support
multiple languages the translate option should be used.

Create generic resource file

When a new project file is created a new, generic, resource file
can also be generated at the same time. This file is only
created when there is no existing project file.

Output Options

Description

Project Path

Directory where the project file will reside.

Relative Source Path

Subdirectory of the project path where all source files will be
created.

Relative Resource Path

Subdirectory of the project path where all resource files will be
created.

Log

Description

<Progress Log>

A record of each step is displayed in this section of the utility.
All error codes, warnings, and information steps are shown in
this log window.

Select Calibration Inc.

November 13, 2023 Page 4 of 13

ClassGenerator Users Guide

Log Description
Process Process the input file and perform all requested tasks.
Close Close the ClassGenerator utility.

The input for the UI file, the header data, and the project path are drag and drop aware.
Dragging the file or directory into any of these input fields will have the content automatically
set.

ClassGenerator Example

The following is an example of a Qt Designer Ul file processed by the ClassGenerator utility.

. "
Example Qt Designer Dialog
-~ B
- .
et
;/ b,
i X
|I II Filter ‘:llh /"'
| | SampleDialog : QDialog
l ! Property Vvalue
S /J. objectName SampleDialog
R - =
SE— enabled []
geometry [{0, 0), 400 x 300]
X 0
Y 0
Cancel OK Width AlignLeft, AlignVCenter

Height 300
Illustration 2: Example Qt Designer dialog as displayed Illustration 3: Property view of example UI file top level
by the Qt Designer widget.

In the example shown in illustration 2 a dialog is created with a various control elements.
Illustration 3 shows the name of the top level object set to SampleDialog and is a subclass of
QDialog. The Ul file is saved with the name sample_designer _file.ui.

Project Output File

With the option Update project file checked if an existing project file is found at the project path
then this file is updated with the new source files. In this case the project path was empty so a
new project file was created.

The name of the existing project file is not changed. When a new project file is created the name
of the top level widget from the Qt Designer file is used.

Example of a generated project file:

CONFIG += release \
warn_on \
gt \
thread \
c++11

Select Calibration Inc. November 13, 2023 Page 5 of 13

ClassGenerator Users Guide

TEMPLATE = app
DESTDIR = bin

CONFIG (debug, debug|release) {

TARGET = sampledialogd
} else {

TARGET = sampledialog
}
OBJECTS DIR = build/obj
MOC_DIR = build/moc
QT += core \

gui

greaterThan (QT MAJOR VERSION, 4): {
QT += widgets
}

SOURCES += src/main.cpp \
src/sampledialog.cpp

HEADERS += src/sampledialog.h
RESOURCES += res/sampledialog.qgrc
macx {

ICON = res/icons.icns

linux-g++{

isEmpty (PREFIX) {

PREFIX = /usr/lib/sampledialog
}

target.path = $SSPREFIX

target.files = bin/sampledialog
INSTALLS += target

}

win32 {

RC_FILE = res/resource.rc

}

Some of the options are added but commented out. For example, the Win32:RC_FILE entry
requires a resource file otherwise it will generate an error. When the resource file is created this
line can be un-commented.

Source Output Files

The source files (*.cpp and *.h) are created when the Qt Designer UI file is processed. All
sources files are placed in the Relative Source Path subfolder relative to the current location of the
project. An example of the contents of the source files are shown below:

Header File:
[177177

Select Calibration Inc. November 13, 2023 Page 6 of 13

ClassGenerator Users Guide

// HEADER FILE FROM INPUT
[11700777777777777770777

#ifndef SAMPLEDIALOGHEADERFILE
#define SAMPLEDIALOGHEADERFILE

#include <QDialog>

class QDial;

class QDialogButtonBox;

class QSlider;

class TSampleDialog : public QDialog

{

Q OBJECT

public:

// CREATORS
TSampleDialog (const QWidget *parent=0, Qt::WindowFlags flags=Qt::WindowFlags());
~TSampleDialog (void) ;

// ACCESSORS

// MANIPULATORS

signals:

private slots:

private:
QDhial *d dial;
ODialogButtonBox *d button box;
QSlider *d _slider widget;

// NOT IMPLEMENTED
TSampleDialog (const TSampleDialogé&) ;
TSampleDialogé& operator=(const TSampleDialogé&) ;
bi

#endif

Source File:

[/1777777777770777
//

// HEADER FILE FROM INPUT

//

L1177 7777777770777

#include <QApplication>
#include <QDial>

finclude <QDialogButtonBox>
#include <QFont>

finclude <QHBoxLayout>
#include <QLabel>

#include <QSlider>

#include <QVBoxLayout>

Select Calibration Inc. November 13, 2023 Page 7 of 13

ClassGenerator Users Guide

#include "sampledialog.h"

TSampleDialog::TSampleDialog (

const QWidget *parent,
const Qt::WindowFlags flags)

:QDialog (const cast<QWidget*>(parent), flags)

{
QFont font;
QHBoxLayout *horizontallLayout;
QLabel *label;
QVBoxLayout *verticallayout;

font.setPointSize (20) ;
font.setWeight (75);
font.setItalic (true);
font.setBold(true);

this->resize (400, 300);

verticallayout = new QVBoxLayout (this);
label = new QLabel (this);
label->setMaximumSize (16777215, 60) ;

label->setFont (font) ;
label->setStyleSheet (QStringLiteral ("background-color:

gconicalgradient (¢cx:0,

cy:0, angle:135, stop:0 rgba(255, 255, 0, 69), stop:0.375 rgba(255, 255, 0, 69),
stop:0.423533 rgba (251, 255, 0, 145), stop:0.45 rgba(247, 255, 0, 208), stop:0.477581
rgba (255, 244, 71, 130), stop:0.518717 rgba (255, 218, 71, 130), stop:0.55 rgba (255,
255, 0, 255), stop:0.57754 rgba (255, 203, 0, 130), stop:0.625 rgba(255, 255, 0, 69),
stop:1 rgba (255, 255, 0, 69));™));

verticallayout->addWidget (label) ;

horizontallLayout = new QHBoxLayout () ;

d slider widget = new QSlider (this);

d slider widget->setMaximumSize (200,16777215);

d slider widget->setMaximum(100);

d slider widget->setOrientation (Qt::Horizontal);
horizontallLayout->addWidget (d_slider widget);

d dial = new QDial (this);

d dial->setMaximum(100) ;
horizontallLayout->addWidget (d dial);
verticallayout->addLayout (horizontallLayout) ;

d button box = new QDialogButtonBox (this);
d button box->setOrientation(Qt::Horizontal);

d button box->setStandardButtons (QDialogButtonBox::Cancel|QDialogButtonBox: :0k) ;

verticallLayout->addWidget (d_button box);

this->setWindowTitle (QStringLiteral ("Dialog"));

}

label->setText (QStringLiteral ("Example Qt Designer Dialog"));

connect (d_button box, SIGNAL (accepted(void)), this, SLOT (accept (void)));
connect (d_button box, SIGNAL (rejected(void)), this, SLOT (reject (void))) ;
connect (d_slider widget,SIGNAL(sliderMoved (int)),d dial,SLOT (setValue (int)));

TSampleDialog::~TSampleDialog(void)

Select Calibration Inc.

November 13, 2023 Page 8 of 13

ClassGenerator Users Guide

{
}

Effect of Input Options

The generated output is partially defined on the input options. The following is a list of how the
different options affected the generated code:

+ The output file names are sampledialog.h and sampledialog.cop. The file names are
always a lower case version of the widget name which is SampleDialog in this case.

» Each source file has the contents of the header data file placed at the top.
« The include guards in the header file are based on the name of the input widget.

« The class name, TSampleDialog, is a combined name from the option Class Prefix and the
name of the widget.

+ Class private objects are placed in the header file. Objects that are assigned in this
location start with the same text as displayed in the option Class Object Prefix. Objects
that do not have the same prefix will appear in the constructor instead.

« Forward declarations are added in the header for all class object variables.

« All class signals and slots created in the designer will be automatically declared in the
header. All class slots will also be defined in the cpp file (not shown in example).

« The copy and assignment constructors are placed in the private section and left
unimplemented.

« All object and function parameters are placed in two columns. The type of variable is
placed one tab stop from the left margin and the variable declaration is placed based on
the option Right Column Position.

Column positions are set using tabs. The actual position of the column will be equal to or the
first tab stop position beyond the value of option Right Column Position. The option Tab Stop
Width must be set to match the text editor used to display the code in order to have the
appearance as intended.

« All objects are placed at the top of the constructor and sorted based on type and variable
name (in that order).

« All text is initialized at the end of the constructor in one section of the program.

+ The option Use QApplication::translate for strings will determine if the text is produced
using one of these two methods:

this->setWindowTitle (QApplication::translate ("TSampleDialog","Dialog",0))
or

this->setWindowTitle (QStringLiteral ("Dialog"));

Main and Resource Files

This main.cpp is created if the option Create generic main.cpp file is checked and only when a new
project file is created (not an update of an existing project file). When there is an existing project
file likely there is already an existing main.cpp so this is only created if no existing main.cpp file is
found.

Select Calibration Inc. November 13, 2023 Page 9 of 13

ClassGenerator Users Guide

Main.cpp file:

LILTD7 7007777700077 7700777770777 777 7777 777777777777777777777777777

//
// HEADER FILE FROM INPUT

/7
LILTTT 7007777000777 7007777770777 77777 777777777777777777777777777

#include <QApplication>
#include <QIcon>
#include <QStyleFactory>

#include "sampledialog.h"

int main(int argc, char *argvl([])

{

int ret value;
QApplication app(argc, argv);

#ifndef Q OS MAC
QApplication::setStyle (QStyleFactory::create("fusion"));
fendif

app.setWindowIcon (QIcon (QStringLiteral (":/icons/sampledialog.png")));
TSampleDialog *w = new TSampleDialog;

w—>show () ;
ret value = app.exec();

delete w;
return ret value;

}

Resource File:

This resource file is created if the option Create generic resource file is checked and only when a
new project file is created (not an update of an existing project file). When there is an existing
project file likely there is already an existing resource file so this is only created if no existing
project file is found.

All resource files are created in the subfolder Relative Resource Path from the location of the
project. The name of the resource file will match the name of the top level widget which would be
sampledialog.qrc in this case.

<!DOCTYPE RCC><RCC version="1.0">

<gresource prefix="/icons">
<file>sampledialog.png</file>

</qresource>
<gresource prefix="/gui">
</qresource>
<gresource prefix="/images">
</qresource>

</RCC>

Select Calibration Inc. November 13, 2023 Page 10 of 13

ClassGenerator Users Guide

Compiling Project

Once all project, source, and resource files are in the proper location it is only necessary to
compile and run the program:

bash-3.2$ gmake
bash-3.2$ make
/RApplications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/
bin/clang++ e -pipe -02 -isysroot
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/
Mac0SxX10.11.sdk -mmacosx-version-min=10.7 -Wall -W -fPIE -DQT NO DEBUG -DQT WIDGETS LIB
-DQT GUI LIB -DQT CORE_LIB -I/usr/lib/qt5/mkspecs/macx-clang -I.
[-- compiler output removed -]

bin/sampledialog.app/Contents/MacOS/sampledialog build/obj/main.o
build/obj/sampledialog.o build/obj/qrc sampledialog.o build/obj/moc_sampledialog.o -
F/usr/lib/qt5/1ib -framework QtWidgets -framework QtGui -framework QtCore -framework
DiskArbitration -framework IOKit -framework OpenGL -framework AGL
bash-3.2$ open bin/sampledialog.app

bash-3.2$
Example Qt Designer Dialog
.//f = e \\
— | ;]
‘\ S /
Cancel OK

Illustration 4: Result of running compiled project.

Existing Projects

When the project file already exists there are some differences in the behavior of the
ClassGenerator utility:

The name of the existing project file is not changed.

The option to generate a resource file is ignored. The existing project is expected to have
an existing resource file already.

The option Create generic main.cpp file only works if there is no existing main.cpp file.

If the option Update Project File is checked the new source and header files will be added
to the list of sources and headers in the existing project file.

Select Calibration Inc. November 13, 2023 Page 11 of 13

ClassGenerator Users Guide

Compilation Errors

In the event that the created source files return a compilation error then, most likely, a property
type was not uniquely handled resulted in an invalid source code entry. The functions that deal
with this are Process_Property() and Process_Property_Content() in the code file UI. There should
be a corresponding warning in the ClassGenerator output log when this happens.

As part of testing every property and attribute combination were run through this utility along
with a large number of sample UI files. It is possible some property flags and contents were
missed. If something is found then the two Process_Property() functions should be updated to
handle the missing property type.

Select Calibration Inc. November 13, 2023 Page 12 of 13

ClassGenerator Users Guide

Revision History

Date Version Changes

Dec 13, 2015 1.0 New Program

Feb 27, 2016 1.1 Bug Fix: Missing ampersand '&' in header copy constructor.
Bug Fix: Layout properties not processed.

Oct 15, 2016 1.2 Bug Fix: QDockWidgets not handled properly
Bug Fix: Complex QMenu and sub menus not handled properly.
Updated debug output to show a more nested view of what is
processed along with the generated code.

Nov 13, 2023 1.3 Bug Fix: Wrong character for slot function scope

Using Qt::WindowFlags() instead of NULL for flags
Removed references to nspool on macOS

Added setWindowlIcon in main.cpp

Changed default icon size to 64x64

Redesign of interface.

Select Calibration Inc.

November 13, 2023 Page 13 of 13

	Introduction
	Overview
	ClassGenerator Example
	Project Output File
	Source Output Files
	Effect of Input Options
	Main and Resource Files

	Compiling Project
	Existing Projects
	Compilation Errors
	Revision History

