
Sourcetree Users Guide

Copyright © 2025 by Select Calibration Inc. All rights reserved.

Sourcetree Users Guide

Table of Contents
Introduction...3
Overview...3

Source Directory Exclusion..5
Output...6

Compilation Example Using QMake...9
Compilation Example Using CMake...9

Revision History..12

Select Calibration Inc. January 17, 2025 Page 2 of 12

Sourcetree Users Guide

Introduction
The Sourcetree utility creates a folder populated with all files and dependent projects necessary to
compile a specific Qt project. The created folder can then be compressed and distributed as the
source code for the Qt project. The generated source tree optionally includes a top-level project
file and compilation instructions. Starting with version 2.0 of the Sourcetree utility the cmake
CMakeLists.txt files are automatically generated from all Qt project files allowing makefiles to be
created from QMake or CMake depending on user preferences.

Prior to writing this utility the process to create the source tree was done manually with mixed
results, no instructions, and no top-level project file. One obvious example of a missed file was
info.plist which is needed when compiled on MacOS systems. It was assumed the end user would
have enough background with Qt to be able to figure out what steps were needed to compile a
project but, particularly for projects with sub-dependent projects, this would require some trial
and error. When using the Sourcetree utility with a top-level project file this kind of problem is
eliminated.

Although binaries for macOS are no longer provided they can be created easily enough provided
the necessary prerequisites are met for Qt. The primary development systems used by SCI are
GNU/Linux and macOS with only testing done on Windows.

Overview
The Sourcetree utility is a single window sectioned into different functions. Illustration 1 shows
the Sourcetree utility with the Qt project MeasureDirect loaded.

Creating a source tree for an existing Qt project involves the following steps:

1. Select the Qt project file from the Information section of the Sourcetree utility.

2. Click the Load button to read the Qt project file and all dependent files.

3. Change the Name and Version fields in the Information section as necessary. The name
field is automatically set based on the name of the source project where the version field
contains the last used entry.

4. Review the list of included source directories in the source section of the Sourcetree utility
and uncheck anything that should be excluded from the final source tree.

5. Review the output options for target location, readme file, and the option for the creation
of the top-level project.

6. Click the Create button to have the source tree created.

Select Calibration Inc. January 17, 2025 Page 3 of 12

Sourcetree Users Guide

Illustration 1: Main window of the Sourcetree utility processing MeasureDirect version 3.4

Table 1: Options:

Section Option Description

Information Qt Project File Name and location of the existing Qt project file that
will be used to generate the source tree.

Name Name associated to the project. When a project is
loaded the name of the containing folder of the
project file is used but this can be changed.

Version Version of the program. This value is static and
must be set by the user.

Sources Referenced Directories List of directories that contain one or more required
files. Any references to files in the specific directory
can be ignored by unchecking the entry. See section
Source Directory Exclusion for details.

Output Target Directory Location where the source tree folder will be created.

Select Calibration Inc. January 17, 2025 Page 4 of 12

Sourcetree Users Guide

Section Option Description

Include Readme Option to include a readme file. The specified file
will be copied into the top level of the source tree.

Create Top-Level Project
File

Option to create a top-level project file. If created
the entire project and all dependencies can by
created in one step.

Load Load the specified Qt project file.

Create Create the source tree.

Close Close the utility.

Source Directory Exclusion

Source directories containing one or more referenced files can be ignored when creating the
source tree by unchecking the specific folder. Illustration 2 shows an example of the exclusion of
referenced files for a specific project.

Illustration 2: List of directories from which referenced files will be
added to the source tree.

Only directories can be excluded and not individual files. Depending on the type of file(s)
contained in the excluded directory the source code may not compile.

One method to deal with problems of missing source files is by using define statements. From the
example shown in illustration 2 where the sub folder src_extra is excluded the project file and
source code has the following entries:

Project File:

DEFINES += INCLUDE_SRC_EXTRA
…
contains(DEFINES, INCLUDE_SRC_EXTRA) {

SOURCES += src_extra/controller_dc_code.cpp
HEADERS += src_extra/controller_dc_code.h

}

Source File:

#if defined INCLUDE_SRC_EXTRA

Select Calibration Inc. January 17, 2025 Page 5 of 12

Sourcetree Users Guide

#include "../src_extra/controller_dc_code.h"
#endif

Excluding directories doesn't make sense in most cases but there are, on occasion, reasons why it
might be necessary.

Output
Using the Sourcetree utility project as an input the following shows the structure of the generated
source tree:

sourcetree-2.0
├── CMakeLists.txt
├── core
│ ├── messagebox.cpp
│ └── messagebox.h
├── default_data
│ └── Info.plist
├── libcmakelists
│ ├── CMakeLists.txt
│ ├── libcmakelists.pro
│ └── src
│ ├── libcmakelists.cpp
│ ├── libcmakelists.h
│ ├── libcmakelistsimpl.cpp
│ └── libcmakelistsimpl.h
├── project.pro
├── readme.txt
└── sourcetree
 ├── CMakeLists.txt
 ├── res
 │ ├── icons.icns
 │ ├── logo.png
 │ ├── resource.rc
 │ ├── sourcetree.png
 │ ├── sourcetree.qrc
 │ └── winicon.ico
 ├── sourcetree.pro
 └── src
 ├── main.cpp
 ├── sourcetree.cpp
 └── sourcetree.h

8 directories, 23 files

The files included in the source tree contain operating specific references files such as info.plist
(macOS) or resource.rc (Windows) regardless of the operating system the utility is run on. Files
such as the Windows resource file are also scanned for dependent files and included in the final
source tree.

Starting with version 2.0 of the SourceTree utility the CMakeLists.txt files are created for each
each project and sub project. Use of cmake to generate the make files has been available in Qt
for some time but with Qt version 6.0 and up the default is to use cmake instead of qmake.

The following is an example of the Qt project file from the library used to generate the
CMakeLists.txt file and the generated output.

Select Calibration Inc. January 17, 2025 Page 6 of 12

Sourcetree Users Guide

QMake Project File:

#
libcmakelists project file
#
TEMPLATE = lib
CONFIG += staticlib
CONFIG += release
CONFIG += c++11

DEFINES += DEBUG_DATA_PROCESSING

win32 {
CONFIG -= staticlib
CONFIG += dll
}

DESTDIR = lib

CONFIG(debug, debug|release):TARGET = cmakelistsd
else:TARGET = cmakelists

QT += core

QT -= gui

OBJECTS_DIR = build/obj
MOC_DIR = build/moc

HEADERS += src/libcmakelists.h \
src/libcmakelistsimpl.h

SOURCES += src/libcmakelists.cpp \
src/libcmakelistsimpl.cpp

DEFINES += CONFIGURE_DLL_EXPORT

CMake Project File:

cmake_minimum_required(VERSION 3.16)

project(cmakelists)

if(WIN32)

 add_definitions(-DUNICODE -D_UNICODE)

 if(MSVC)
 set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)

 endif()

endif()

if(DEFINED TARGET_BIN_LOCATION)
 set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${TARGET_BIN_LOCATION})
 set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${TARGET_BIN_LOCATION})
else()
 set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/bin)
 set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/lib)

Select Calibration Inc. January 17, 2025 Page 7 of 12

Sourcetree Users Guide

endif()

set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/lib)

set(CMAKE_INCLUDE_CURRENT_DIR ON)
set(CMAKE_AUTOMOC ON)

find_package(QT NAMES Qt6 Qt5)

message(STATUS "Using prefix Qt${QT_VERSION_MAJOR} for components...")

find_package(Qt${QT_VERSION_MAJOR} REQUIRED COMPONENTS Core)
find_package(Qt${QT_VERSION_MAJOR} REQUIRED COMPONENTS Widgets)

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

set(sources src/libcmakelists.cpp
 src/libcmakelistsimpl.cpp)

set(headers src/libcmakelists.h
 src/libcmakelistsimpl.h)

if(WIN32)
 add_library(cmakelists SHARED ${sources} ${headers})
else()
 add_library(cmakelists STATIC ${sources} ${headers})
endif()

if(WIN32)

endif()

target_link_libraries(cmakelists PRIVATE Qt${QT_VERSION_MAJOR}::Core)
target_link_libraries(cmakelists PRIVATE Qt${QT_VERSION_MAJOR}::Widgets)

target_compile_definitions(cmakelists PRIVATE CONFIGURE_DLL_EXPORT)

set_target_properties(cmakelists PROPERTIES DEBUG_POSTFIX "d")

install(TARGETS cmakelists DESTINATION Libs)

The options available for Qt project files are vast and not all cases are covered by this utility. The
differences between qmake and cmake project files are also just as vast so a suitable translator
must be more than a simple translation from one syntax form to another.

The CMakeLists.txt file for any source project from SCI will compile without changes. Qt project
files with more complex options may need to be manually edited. The potential to handle a
variety of Qt project file states and modes exist and will be updated as needed.

Program Compilation Using QMake

Compiling the program from the source tree using the Qt project file can be done by running the
following commands from the terminal window:

qmake
make

Select Calibration Inc. January 17, 2025 Page 8 of 12

Sourcetree Users Guide

It is necessary to have a version of Qt installed and accessible from the command line in order to
perform this step.

Compilation Example Using QMake

The following shows the Sourcetree utility compiled from the generated source tree on GNU/Linux
using QMake. The source tree is created in the folder ~/sourcetree-2.0 in this example:

ron@linux-4o1p:~/MyProjects/sourcetree-2.0> qmake
Info: creating stash file /home/ron/MyProjects/sourcetree-2.0/.qmake.stash
ron@linux-4o1p:~/MyProjects/sourcetree-2.0> make
cd libcmakelists/ && (test -e Makefile || /usr/lib/qt5/bin/qmake -o Makefile
/home/ron/MyProjects/sourcetree-2.0/libcmakelists/libcmakelists.pro) && make -f Makefile
make[1]: Entering directory '/home/ron/MyProjects/sourcetree-2.0/libcmakelists'
g++ -c -pipe -O2 -fPIC -std=gnu++11 -Wall -W -D_REENTRANT -DCONFIGURE_DLL_EXPORT
-DQT_NO_DEBUG -DQT_CORE_LIB -I. -I/usr/lib/qt5/include -I/usr/lib/qt5/include/QtCore
-Ibuild/moc -I/usr/lib/qt5/mkspecs/linux-g++ -o build/obj/libcmakelists.o
src/libcmakelists.cpp
g++ -c -pipe -O2 -fPIC -std=gnu++11 -Wall -W -D_REENTRANT -DCONFIGURE_DLL_EXPORT
-DQT_NO_DEBUG -DQT_CORE_LIB -I. -I/usr/lib/qt5/include -I/usr/lib/qt5/include/QtCore
-Ibuild/moc -I/usr/lib/qt5/mkspecs/linux-g++ -o build/obj/libcmakelistsimpl.o
src/libcmakelistsimpl.cpp
rm -f lib/libcmakelists.a
ar cqs lib/libcmakelists.a build/obj/libcmakelists.o build/obj/libcmakelistsimpl.o
make[1]: Leaving directory '/home/ron/MyProjects/sourcetree-2.0/libcmakelists'
cd sourcetree/ && (test -e Makefile || /usr/lib/qt5/bin/qmake -o Makefile
/home/ron/MyProjects/sourcetree-2.0/sourcetree/sourcetree.pro) && make -f Makefile
make[1]: Entering directory '/home/ron/MyProjects/sourcetree-2.0/sourcetree'
…
<output removed for size>
…
g++ -c -pipe -O2 -std=gnu++11 -D_REENTRANT -Wall -W -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB
-DQT_GUI_LIB -DQT_CORE_LIB -I. -I../libcmakelists/src -I/usr/lib/qt5/include
-I/usr/lib/qt5/include/QtWidgets -I/usr/lib/qt5/include/QtGui
-I/usr/lib/qt5/include/QtCore -Ibuild/moc -isystem /usr/include/libdrm
-I/usr/lib/qt5/mkspecs/linux-g++ -o build/obj/moc_sourcetree.o
build/moc/moc_sourcetree.cpp
g++ -Wl,-O1 -Wl,-rpath,/usr/lib/qt5/lib -o bin/sourcetree build/obj/messagebox.o
build/obj/main.o build/obj/sourcetree.o build/obj/qrc_sourcetree.o
build/obj/moc_sourcetree.o -L../libcmakelists/lib -lcmakelists -lpthread
/usr/lib/qt5/lib/libQt5Widgets.so /usr/lib/qt5/lib/libQt5Gui.so
/usr/lib/qt5/lib/libQt5Core.so /usr/lib64/libGL.so
make[1]: Leaving directory '/home/ron/MyProjects/sourcetree-2.0/sourcetree'
ron@linux-4o1p:~/MyProjects/sourcetree-2.0>
ron@linux-4o1p:~/MyProjects/sourcetree-2.0> sourcetree/bin/sourcetree ← running program
ron@linux-4o1p:~/MyProjects/sourcetree-2.0>

Compilation Example Using CMake

The following shows the Sourcetree utility compiled from the generated source tree on GNU/Linux
using CMake. The source tree is created in the folder ~/sourcetree-2.0 in this example:

ron@linux-4o1p:~/MyProjects/sourcetree-2.0> cmake . ← generator is g++ on GNU/Linux
-- The C compiler identification is GNU 7.5.0
-- The CXX compiler identification is GNU 7.5.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc - works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done

Select Calibration Inc. January 17, 2025 Page 9 of 12

Sourcetree Users Guide

-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ - works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Using prefix Qt5 for components...
-- Using prefix Qt5 for components...
-- Configuring done
-- Generating done
-- Build files have been written to: /home/ron/MyProjects/sourcetree-2.0

ron@linux-4o1p:~/MyProjects/sourcetree-2.0> make
Scanning dependencies of target cmakelists_autogen
[7%] Automatic MOC for target cmakelists
[7%] Built target cmakelists_autogen
Scanning dependencies of target cmakelists
[15%] Building CXX object
libcmakelists/CMakeFiles/cmakelists.dir/cmakelists_autogen/mocs_compilation.cpp.o
[23%] Building CXX object libcmakelists/CMakeFiles/cmakelists.dir/src/libcmakelists.cpp.o
[30%] Building CXX object
libcmakelists/CMakeFiles/cmakelists.dir/src/libcmakelistsimpl.cpp.o
[38%] Linking CXX static library lib/libcmakelists.a
[38%] Built target cmakelists
Scanning dependencies of target sourcetree_autogen
[46%] Automatic MOC for target sourcetree
[46%] Built target sourcetree_autogen
[53%] Automatic RCC for res/sourcetree.qrc
Scanning dependencies of target sourcetree
[61%] Building CXX object
sourcetree/CMakeFiles/sourcetree.dir/sourcetree_autogen/mocs_compilation.cpp.o
[69%] Building CXX object sourcetree/CMakeFiles/sourcetree.dir/__/core/messagebox.cpp.o
[76%] Building CXX object sourcetree/CMakeFiles/sourcetree.dir/src/main.cpp.o
[84%] Building CXX object sourcetree/CMakeFiles/sourcetree.dir/src/sourcetree.cpp.o
[92%] Building CXX object
sourcetree/CMakeFiles/sourcetree.dir/sourcetree_autogen/PNK5WDWK6L/qrc_sourcetree.cpp.o
[100%] Linking CXX executable ../bin/sourcetree
[100%] Built target sourcetree
ron@linux-4o1p:~/MyProjects/sourcetree-2.0> bin/sourcetree ← running program
ron@linux-4o1p:~/MyProjects/sourcetree-2.0>

Select Calibration Inc. January 17, 2025 Page 10 of 12

Sourcetree Users Guide

Illustration 3: Execution of the compiled CMake sourcetree utility from the command line on MacOS.

Select Calibration Inc. January 17, 2025 Page 11 of 12

Sourcetree Users Guide

Revision History

Date Version Changes

July 25, 2022 1.0 New Program

Dec 25, 2023 1.1 [bugfix] Better handling of poorly formatted Qt project files.

Jan 6, 2025 2.0 [bugfix] Prevent recursive loading of the same project file
Added option to generate CMakeList.txt file.

Jan 16, 2025 2.1 [bugfix] Issues with top level project file with mult-level sub
projects.
[bugfix] Var TARGET_BIN_LOCATION not conditionally set in
subdir projects.

Jan 17, 2025 2.2 [bugfix] Blank WIN32 scope created in cmake file.
Added processing scope for Qt CONFIG(...).
Added processing scope for Qt CONTAINS(...).

Select Calibration Inc. January 17, 2025 Page 12 of 12

	Introduction
	Overview
	Source Directory Exclusion

	Output
	Compilation Example Using QMake
	Compilation Example Using CMake

	Revision History

